Software

Software

Here you can showcase the software tools, packages, and applications you’ve developed or frequently use in your statistical work.

Statistical Software

R Programming

  • R Studio: Integrated development environment for R
  • R Markdown: Dynamic documents with R code
  • Shiny: Interactive web applications
  • ggplot2: Data visualization
  • dplyr: Data manipulation
  • tidyr: Data tidying

Python

  • Jupyter Notebooks: Interactive computing
  • Pandas: Data analysis and manipulation
  • NumPy: Numerical computing
  • Matplotlib: Plotting library
  • Seaborn: Statistical data visualization

GIS and Spatial Analysis

  • QGIS: Geographic Information System
  • ArcGIS: Professional GIS software
  • R spatial packages: sf, sp, raster
  • Python spatial: GeoPandas, Folium

Custom Applications

Shiny Apps

  • Interactive dashboards for data visualization
  • Statistical analysis tools
  • Data exploration applications

Web Applications

  • Modern web interfaces for statistical tools
  • API development for data services
  • Real-time data processing applications

Development Tools

Version Control

  • Git: Source code management
  • GitHub: Code hosting and collaboration

Documentation

  • Quarto: Scientific and technical publishing
  • R Markdown: Reproducible research
  • Jupyter: Interactive documentation

Cloud and Deployment

Cloud Platforms

  • AWS: Cloud computing services
  • Google Cloud: Data processing and storage
  • Azure: Microsoft cloud platform

Containerization

  • Docker: Application containerization
  • Kubernetes: Container orchestration

This section showcases the software tools and technologies I use in my statistical and data science work.